Indirect Utility and Expenditure Functions: Some Examples

\(i \) Fixed Coefficients

If the utility function is

\[u(x) = \min(ax_1, bx_2) \]

then the Marshallian demands are

\[x_1 = \frac{b}{p_1b + p_2a} M \]

and

\[x_2 = \frac{a}{p_1b + p_2a} M \]

so that

\[ax_1 = bx_2 = \frac{ab}{p_1b + p_2a} M \]

which means that the indirect utility function is

\[v(p_1, p_2, M) = \frac{ab}{p_1b + p_2a} M \]

A check on Roy’s Identity: from the above indirect utility function,

\[\frac{\partial v}{\partial M} = \frac{ab}{p_1b + p_2a} \]

\[\frac{\partial v}{\partial p_1} = -\frac{ab^2}{(p_1b + p_2a)^2} \]

\[\frac{\partial v}{\partial p_2} = -\frac{a^2b}{(p_1b + p_2a)^2} \]

so that

\[x_i \frac{\partial v}{\partial M} = -\frac{\partial v}{\partial p_i} \]

for goods \(i = 1, 2 \).

What level of expenditure would give the person the utility level \(u \). If she had \(E \) dollars to spend, then she would get utility of

\[u = \frac{ab}{p_1b + p_2a} E \]

if the prices she faced were \(p_1 \) and \(p_2 \). That means that the expenditure \(E \) required to get the utility level \(u \) when prices are \(p_1 \) and \(p_2 \) is

\[E(p_1, p_2, u) = \frac{p_1b + p_2a}{ab} u \]

which is the person’s expenditure function. The person’s Hicksian, or compensated, demands for the goods are the partial derivatives of the expenditure function with respect to the prices:

\[E_1(p_1, p_2, u) = \frac{b}{ab} u \]

\[E_2(p_1, p_2, u) = \frac{a}{ab} u \]

Notice that here the compensated demands for each good do not depend on the price of the good: with \(L \)-shaped indifference curves, the person will always locate at the kink on the indifference curve, regardless of prices.
Perfect Substitutes

If \(u(x) = a_1x_1 + a_2x_2 + \cdots + a_nx_n \)

then if \(\frac{a_1}{p_1} > \frac{a_2}{p_2} > \cdots > \frac{a_n}{p_n} \)

the person will consume only good 1:

\[
x_1 = \frac{M}{p_1}
\]

and \(x_i = 0 \) for every \(i > 1 \). Her level of utility would then be \(\frac{a_1M}{p_1} \). More generally, she consumes only the good(s) for which \(\frac{a_i}{p_i} \) is at a maximum. So

\[
v(p_1, p_2, \ldots, p_n, M) = \max \left(\frac{a_1M}{p_1}, \frac{a_2M}{p_2}, \ldots, \frac{a_nM}{p_n} \right)
\]

[left to the reader : Roy’s Identity holds here.] How much money \(E \) would she need to get the utility level \(u \)? She would spend all her money on the good \(i \) for which \(\frac{a_i}{p_i} \) is lowest. And to get utility \(u \) from consuming good \(i \) means consuming \(\frac{u}{a_i} \) units of the good, which will cost \(p_i \frac{u}{a_i} \). That means that

\[
E(p_1, p_2, \cdots, p_n, u) = \min \left(\frac{p_1u}{a_1}, \frac{p_2u}{a_2}, \cdots, \frac{p_nu}{a_n} \right)
\]

which makes the person’s compensated demand for good \(i \) \(\frac{u}{a_i} \) if good \(i \) yields the highest level of \(\frac{a_i}{p_i} \), and 0 otherwise.

Quasi–Linear Preferences

\[iiia \quad u(x_1, x_2, x_3) = x_1 + 2\sqrt{x_2} + \ln x_3 \]

In this case, the demand functions are

\[
x_2 = (\frac{p_1}{p_2})^2 \quad (2'')
\]

\[
x_3 = \frac{p_1}{p_3} \quad (3'')
\]

\[
x_1 = \frac{M}{p_1} - \frac{p_1}{p_2} - 1
\]

if the person’s income \(M \) is high enough so that \(M > (p_1)^2/p_2 - p_1 \).

Substituting into the direct utility function, the person’s utility is

\[
[\frac{M}{p_1} - \frac{p_1}{p_2} - 1] + 2\sqrt{\left(\frac{p_1}{p_2}\right)^2} + \ln \left(\frac{p_1}{p_3}\right)
\]

so that

\[
v(p_1, p_2, p_3, M) = \frac{M}{p_1} + \frac{p_1}{p_2} + \ln p_1 - \ln p_3 - 1
\]

The expenditure function \(E(p_1, p_2, p_3, u) \) must (always) satisfy the condition

\[
v(p_1, p_2, p_3, E[p_1, p_2, p_3, u]) = u
\]

so that here

\[
u = \frac{E(p_1, p_2, p_3, u)}{p_1} + \frac{p_1}{p_2} + \ln p_1 - \ln p_3 - 1
\]
or

\[E(p_1, p_2, p_3, u) = p_1 u - \frac{(p_1)^2}{p_2} - p_1 \ln p_1 + p_1 \ln p_3 + p_1 \]

which means that the compensated (Hicksian) demand functions are

\[E_1(p_1, p_2, p_3, u) = u + 1 - 2\frac{p_1}{p_2} - \ln p_1 + \ln p_2 \]

\[E_2(p_1, p_2, p_3, u) = \left(\frac{p_1}{p_2}\right)^2 \]

\[E_3(p_1, p_2, p_3, u) = \frac{p_1}{p_3} \]

In this case, the Marshallian demand functions for goods 2 and 3 are the same as the Hicksian demand functions. This will always be the case with quasi-linear preferences: if the income elasticity of demand for a good is 0, then the Slutsky equation says that the compensated and uncompensated demand functions will be the same.

\[iiiib \quad u(x_1, x_2, x_3) = x_1 + \ln x_2 + \ln x_2 + x_3 \]

Here the Marshallian demand functions are

\[x_2 = \frac{p_1}{p_2 - p_3} \quad (2'') \]

\[x_3 = \frac{p_1(p_2 - 2p_3)}{p_3(p_2 - p_3)} \quad (3'') \]

\[x_1 = \frac{M}{p_1} - 2 \]

when \(M > 2p_1 \) and when \(p_2 > 2p_3 \).

Substituting in the definition of the direct utility function, and simplifying,

\[v(p_1, p_2, p_3, M) = \frac{M}{p_1} + 2 \ln p_1 - \ln (p_2 - p_3) - \ln p_3 - 2 \]

This equation then implies that

\[E(p_1, p_2, p_3, u) = p_1 u + 2p_1 - 2p_1 \ln p_1 + p_1 \ln (p_2 - p_3) + p_1 \ln p_3 \]

giving Hicksian demand functions

\[E_1(p_1, p_2, p_3, u) = u - 2 \ln p_1 + \ln (p_2 - p_3) + \ln p_3 \]

\[E_2(p_1, p_2, p_3, u) = \frac{p_1}{p_2 - p_3} \]

\[E_3(p_1, p_2, p_3, u) = \frac{p_1}{p_3} - \frac{p_1}{p_2 - p_3} = \frac{p_1(p_2 - 2p_3)}{p_3(p_2 - p_3)} \]

so that again the Marshallian demand functions for goods 2 and 3 are the same as the Hicksian demand functions.

\[iv \quad \text{Cobb–Douglas Preferences} \]

3
\[u(x_1, x_2, \ldots, x_n) = x_1^{a_1} x_2^{a_2} \cdots x_n^{a_n} \]

then

\[x_i = \frac{a_i M}{a_1 + a_2 + \cdots + a_n} \quad i = 1, 2, \ldots, n \]

is the Marshallian demand function for good \(i \). That means that

\[v(p_1, p_2, \ldots, p_n, M) = A^{a_1} p_2^{-a_2} \cdots p_n^{-a_n} M^a \]

where

\[A \equiv (a_1)^{a_1} (a_2)^{a_2} \cdots (a_n)^{a_n} \]

and

\[a = a_1 + a_2 + \cdots + a_n \]

(Note that the particular representation of the direct utility function matters for the indirect utility function. Taking a monotonically increasing transformation of \(u(x) \), such as taking \(U(x) = \ln(u(x)) \), will also mean taking that transformation of the indirect utility function, getting \(V(p, M) = \ln[v(p, M)] \) for example.)

The expenditure function in this case is

\[E(p_1, p_2, \ldots, p_n, u) = B^{b_1} (p_2)^{b_2} \cdots (p_n)^{b_n} u^{1/A} \]

where

\[B \equiv A^{1/a} \]

and

\[b_i \equiv \frac{a_i}{a} \]

The Hicksian demand functions are

\[E_i(p_1, p_2, \ldots, p_n, u) = b_i (p_1)^{a_1} (p_2)^{a_2} \cdots (p_{i-1})^{a_{i-1}} (p_i)^{a_i-1} (p_{i+1})^{a_{i+1}} \cdots (p_n)^{a_n} u^{1/A} \]

which shows that, when preferences are Cobb–Douglas, goods are net substitutes even though the Marshallian demand for good \(i \) does not depend on any other prices \(j \).

\(v \) CES Preferences

Done in the textbook.

\(vi \) Stone–Geary Preferences

\[U(x) = b_1 \ln(x_1 - s_1) + b_2 \ln(x_2 - s_2) + \cdots + b_n \ln(x_n - s_n) \]

with

\[b_1 + b_2 + \cdots + b_n = 1 \]

The Marshallian demands are

\[x_i = s_i + \frac{b_i M}{p_i} \sum_{j=1}^{n} p_j s_j \]

which gives rise to an indirect utility function

\[v(p_1, \ldots, p_n, M) = \ln(M - p \cdot s) + \sum_{i=1}^{n} b_i \ln p_i - \sum_{i=1}^{n} b_i \ln p_i \]
(where s is the vector (s_1, s_2, \ldots, s_n). Taking the exponents of both sides

$$e^u = (M - p \cdot s) \tilde{B}(p_1)^{b_1} (p_2)^{-b_2} \cdots (p_n)^{b_n}$$

where

$$\tilde{B} \equiv (b_1)^{b_1} (b_2)^{b_2} \cdots (b_n)^{b_n}$$

and where I have used the facts that $e^{a+b} = e^a e^b$ and that

$$e^{a \ln b} = b^a$$

Therefore

$$E(p_1, p_2, \ldots, p_n, u) = (e^u) \frac{1}{B} (p_1)^{b_1} (p_2)^{b_2} \cdots (p_n)^{b_n} + p \cdot s$$

leading to Hicksian demand functions

$$E_i(p_1, p_2, \ldots, p_n, u) = b_i(e^u) \frac{1}{B} (p_1)^{b_i} (p_2)^{a_2} \cdots (p_{i-1})^{a_{i-1}} (p_i)^{a_i-1} (p_{i+1})^{a_{i+1}} \cdots (p_n)^{a_n} + s_i$$